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Implementierung einer Raman Seitenband Hühlung für 87Rb

Zusammenfassung Im Rahmen dieser Arbeit wurde ein Aufbau realisiert um Atome
selbst bei hohen Dichten weiter effizient kühlen zu können. Das entartete Raman Seiten-
band Kühlen ermöglicht höhere Dichten und niedrigere Temperaturen als die Kühlung
mittels magneto-optischer Falle sowie folgender optischer Molasse und Kompression. Darüber
hinaus bestünde die Möglichkeit Atome innerhalb einer optischen Dipolfalle zu kühlen
jedoch wird beim Raman Seitenband Kühlen gegenüber dem Verdampfungskühlen die
Atomzahl weniger reduziert.

In der vorliegenden Arbeit wird zunächst die grundlegende Struktur der atomaren Ener-
gieniveaus erläutert, daraufhin werden die grundlegenden Elemente des Aufbaus beschrie-
ben sowie die Intensitätsstabilisierung näher charakterisiert. Der grundsätzliche Ablauf
eines Kühlzyklus auf atomarer Ebene wird erklärt und später die Kopplung zwischen den
magnetischen Hyperfeinstrtukturniveaus diskutiert. Die erwartbare Leistungsfähigkeit des
gesamten Prozesses wird gemeinsam mit den ersten Messungen im Zusammenhang mit
dieser Kühlmethode vorgestellt.

Implementation of a Raman Sideband Cooling for 87Rb

Abstract In the Course of this thesis a setup which theoretically enables efficient cooling
even at high densities has been realized. Degenerate Raman sideband cooling makes it
possible to cool to lower temperatures and higher densities than achievable with common
magneto-optical trapping and subsequent optical molasses and compression. Furthermore
this cooling process could be implemented inside an optical dipole trap where cooling with
less loss of trapped atoms could be achieved in comparison to evaporative cooling.

In the presented thesis the basic structure of atomic energy levels is illustrated, next
the basic elements of the setup are described and the characteristics of the intensity
stabilization are specified. The process of cooling is explained on the single atom level
together with the origin of the coupling between different magnetic hyperfine levels. The
expectable performance is discussed along with the first measurements conducted in con-
nection with Raman sideband cooling.
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1. The Rubidium Atom

1.1. Atomic Structure

The Rubidium Atom is one of the alkali metals. The alkali atoms lying in the first group of the
periodic table all have in common that their outermost electron is in an s-orbital. The beneficial
thing about that is that the inner electrons in the closed shells do not contribute to the total spin
and angular momentum, therefore the quantum mechanical description of the hydrogen atom can
be adapted. As there is obviously more than one electron one has to consider the electron-electron
and electron-nucleus interaction in the Hamiltonian. A simple approach just assumes that the inner
electrons sort of shield the nucleus’ core resulting in a single charged core and an electron. The result
would be the binding energies of the hydrogen atom, as this is not true one can modify the principal
quantum number n depending on the outer electron’s orbital. This correction is known as quantum
defect [Foot, 2005]. With the assumptions discussed one can calculate the spin-orbit interaction and
the ongoing hyperfine structure arising from the nuclear spin interacting with the electron spin and
orbit.

1.2. Fine-structure

In 1922 Stern and Gerlach discovered the electron spin due to its interaction with magnetic fields
[Gerlach and Stern, 1922]. An electron orbiting a nucleus could in principle also be considered as
a current resulting in a magnetic field with which the electron spin could interact. Following this
consideration the angular momentum - embodying the orbital movement - should give rise to an
energy difference in the atomic energy structure. As the angular momentum of an electron does
contribute to the energy levels of the atom, the arising energy difference is called fine-structure
splitting. The Hamiltonian results from the Lorentz transformation for electromagnetic fields or in
a more complex from the Dirac equation. In a ”classical” approach the electron sees the electric
field of the core resulting in a magnetic field which is coupling to the electron’s spin, resulting in the
following Hamiltonian in spherical coordinates,

HFS = − ~̂µs · ~B =
µBgs∂rV (r)

mc2~er
~̂L · ~̂S. (1)

Here µB is the Bohr magneton, gs the electron spin g-factor, m the electron’s rest mass, c the speed
of light and e the elementary charge. Due to the transformation back to the laboratory frame arises
a term, the so called Thomas precession [Jackson, 1982]

HT = −µB∂rV (r)

mc2~er
~̂L · ~̂S. (2)

The single angular momentum operators ~̂L and ~̂S are now coupled and result in new quantum num-

bers ~̂J and mJ , the composed angular momentum. Note that the basis of ~̂L and ~̂S does not lose its
validity but the projection of the angular momentum operator, e.g. L̂z (quantization axis along z),
is no longer diagonal in this basis, therefore it’s convenient to change the basis and introduce new
operators. Consequently the total energy shift caused by the spin-orbit interaction is

∆EFS 〈n,L,S,J,mJ |HFS +HT |n,L,S,J,mJ〉 =

µB(gs − 1) 〈n|∂rV (r)|n〉
mc2~er

[J(J + 1)− L(L+ 1)− S(S + 1)].
(3)
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1.3. Hyperfine-structure

The nuclear spin’s ~̂I magnetic moment is given by

~µI = gIµN ~̂I, (4)

it interacts in a similar way with a magnetic field arising from the interaction of the core with the
electron’s spin and orbit. The derivation follows analogous, with some more terms. The resulting

angular momentum ~̂I and therefore also mF is composed from ~̂J and ~̂I. The energy shift [Steck,
2001], if only the magnetic dipole moment is taken into account, reads

∆EHFS =
1

2
AHFS[F (F + 1)− I(I + 1)− J(J + 1)], (5)

where AHFS is called hyperfine-structure constant, which also depends on the atoms state. To give
a rough example for 87Rb in 52S1/2 the hyperfine-structure constant is AHFS = h · 3.417 GHz [Steck,
2001].

1.4. Zeeman Effect

As described above, the atom’s electron(s) interact with electromagnetic fields. If a magnetic field is
applied the Hamilton-operator is composed by

HB =
µB
~

(gs ~̂S + gI ~̂I + gL ~̂L) ·B. (6)

In general the resulting Hamiltonian HHFS +HB needs to be calculated and diagonalized to find the
resulting energy shift, often one does not find an analytical solution so the calculation needs to be
done numerically. For a state with J = 1/2, e.g. the Rb groundstate, the Breit-Rabi formula can be
obtained, the direction of the magnetic field defines the quantization axis then, preferably z.

∆E|J=1/2,mJ ,mI〉 = −AHFS(I + 1/2)

2(2I + 1)
+ µBgI

(
mI +

1

2

)
B

± AHFS(I + 1/2)

2

[
1 + 2

µB(gJ − gI)B
AHFS(I + 1/2)

2mI + 1

2I + 1
+

(
µB(gJ − gI)B
AHFS(I + 1/2)

)2
]1/2 (7)

gJ = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(8)

gI,87Rb = −0.000995 (9)

(10)

2. Setup

2.1. Lattice Laser

Our setup (cf. Fig. 1) for Raman sideband cooling consists of a red-detuned optical lattice derived
from a TOPTICA TA pro, beat note locked to a reference laser. The lattice laser is locked resonant to
the Rb87 F = 2 → F ′ = 2 transition of the D2-line. The reference laser is locked to an ultra-stable
cavity, the reference laser’s locking setup is described in [Tresp, 2013]. The beat note lock technique
utilizes the beat of two overlapped interfering lasers. Adding two sinusoidal waves the resulting
intensity, which is proportional to the time averaged square of the electric field, then reads

I(t) ∝ (E1 sin(ω1t) + E2 sin(ω2t))
2

∝ E2
1

2
(1− cos(2ω1t)) +

E2
2

2
(1− cos(2ω2t)) +

E1E2

2
(cos((ω1 + ω2)t) + cos((ω1 − ω2)t)) .

(11)
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The result is, among other terms, a sum of terms of the sum and difference frequency of the two
waves. Optical frequencies are in the range of 1014 Hz and electronics aren’t yet able to resolve
changes in on that timescale, therefore the only change in intensity which is detected by a biased
Hamamatsu G4176-03 photodiode arises from the difference frequency term. This signal is then
amplified and applied to the input of an Analog Devices EVAL-ADF4007EB1 evaluation board. Inside
this evaluation board the input signal’s frequency is divided by a variable factor N = 8, 16,32,64 and
compared to a reference signal whose frequency is divided by two by default. These two signals are
transformed into digital pulses which are then compared with respect to their phase. The result
of this operation is then fed into a charge-pump which creates a signal in the range of 0 V to 3 V
depending on the phase difference, a similar setup is described in [Appel et al., 2009]. The resulting
signal is then fed to a PID-controller, which operates in three different stages. A PID-controller is
used to stabilize a signal to a desired value, where it utilizes different frequency regimes of the input
signal, to derive an output signal affecting the input signal. The electronic schematic is depicted in
Fig. 18, the capacitor in the integral-part was changed to CI = 10µF.

• P-part: The proportional part creates a signal, which corresponds to the instantaneous devi-
ation of the input signal from the ideal value. This part of the controller corresponds to the
higher frequency components of the signal.

• I-part: The integration part of the controller can be considered to sum up all the deviations
from the ideal value overtime, e.g. if the signal is constant but higher than the desired value
the arising error signal would rise to infinity (with some limits given by the electronics). Since
e.g. very fast oscillations would average out on this part one can use a low-pass filter before
handing the signal to the integrator, the resulting error signal therefore reacts on timescales
longer than the P-part. It also corresponds to the history of the signal.

• D-part: The derivative part utilizes the current change of the signal to derive a error signal.
The error signal is proportional to the derivative of the signal, it tries to minimize the drift
towards a value. The derivative is not affected by the current value, therefore a simple D-part
cannot work as a controller on its own.

Note that the term proportional to the deviation is ambiguous as it leads to an error signal, which
tries to push or pull the input signal’s value to the ideal value, e.g. if the signal is too high the error
signal could have both signs, the important points is that it leads to a process which tries to reduce
the input signal. The input signal to the PID-controller is processed such that the error signal is
zero if the frequency of the laser corresponds to the desired frequency. The error-signal is fed to
the laser’s current-controller as well as the piezo-controller to stabilize the lasers frequency. Since
these two laser components correspond to corrections on different timescales the output signal is split
into lower and higher frequency components which are fed into the piezo and current control. The
resulting beat note signal between the reference laser and the lattice laser in the frequency domain
is depicted in Fig. 2
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Fig. 1: The Setup. The main part of the setup for Raman sideband cooling consists of the three
interfering beams the two horizontal beams subtend an absolute angle α = 55

2
◦ with respect to the

y-axis. To create a standing wave one beam is retroreflected, the vertical beam enters the vacuum
chamber from below. The pump beam propagates along -z-direction. The red lines correspond to
propagating laser beam, the blue lines are polarization-maintaining fibers.
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Fig. 2: Beat note signal between locked and reference laser. (Left) Beat note signal in the frequency
domain with a linear voltage axis. The beat shows a distinct peak with a line width in the kHz range.
(Right) The beat note signal with the voltage depicted in dBm.

2.2. Raman-Pump Laser

The Laser to pump the atoms to a given magnetic hyperfine level is stabilized in a similar manner.
The Vitawave Extended Cavity Diode Laser is also beat note locked but to the F = 1→ F ′ = 0
transition of the D2-line. This laser is also used during the magneto-optical trapping (MOT) to
repump the atoms from F = 1 to F = 2. The light for Raman sideband cooling and for the MOT-
phase does not take the same optical path to the experiment and the is therefore is split by two
acousto-optic modulators (AOM). The first AOM diffracts the light during the MOT phase into the
first order maximum, the zeroth order is reflected by a D-shaped mirror to the second AOM which is
used to adjust the power in the Raman-pump beam during the Raman sideband cooling phase. The
frequency is adjusted for both phases individually. After the MOT phase, the laser is jumped to the
red. The beam in the chamber has an 1/e2-radius of 1.1 mm and provides up to 2 mW of power.

2.3. Lattice Optics and Intensity Stabilization

The lattice depth and curvature depend on the light’s local intensity (cf. subsection 4.1), due to
that the local intensity in the lattice has to be as constant as possible. The local intensity is made
up of two things first the intensity itself and second the polarization, if either changes, the potential
and the oscillation frequency in the trap will change. To achieve a stable lattice the intensity and
polarization has to be as stable as possible, to do so polarization fluctuations are translated into
intensity fluctuations and then the intensity is stabilized.

2.3.1. Intensity Stabilization Electronics

The depicted setup in Fig. 1 adjusts the intensity via an AOM in front of the first fiber. The radio
frequency’s power is determined by a control loop, which starts by measuring the intensity with a
logarithmic photodiode. Using such a logarithmic photodiode provides provides a good signal to noise
ratio over some orders of magnitude so that the lattice can be ramped down while the intensity is
still controlled. A fit was conducted in order to quantify the response of the logarithmic photodiode,
it is depicted in Fig. 3. The output voltage depending on the input is depicted in Fig. 3, as well
as the frequency response. It was measured modulating the AOM power sinusoidal, but due to the
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nonlinear response function of the AOM the sinusoidal signal got distorted, therefore the frequency
response does not perfectly represent the response to a sinusoidal input. Yet there was a modulation
because the AOM power was modulated from its minimum to half of its maximum. The measured
frequency response corresponds to the complete system made up of the AOM and the logarithmic
photodiode.

measured data
2.81+0.22log(x)
resulting fit
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Fig. 3: Power and frequency response. (Left) Power dependent output voltage of the logarithmic
photodiode. The photodiode does not get saturated in the range used for intensity and polarization
stabilization. (Right) The logarithmic photodiode’s frequency response. The response function does
not show any frequency dependence up to ≈ 5 kHz, afterwards the response decreases for higher
frequencies. The 3 dB point corresponds to halving of the incoming power, the quantity effectively
mapped her is the output voltage.

In principle the photodiode itself does not react logarithmic to the incoming intensity or power,
but an logarithmic amplifier (Analog Devices AD8307) translates the linear photodiode’s response
to a logarithmic one which is used to stabilize the polarization and intensity.

The signal derived from the logarithmic amplifier is then again fed into a PID-controller, where
it is internally compared to a reference voltage set by a function generator. The function generator
also provides the possibility to dynamically adjust the lattice intensity in order to release the atoms
adiabatically (cf. subsection 5.4). The PID-controller’s output is then used to again adjust the AOM
power, here only the faster part corresponding to higher frequency components is used to stabilize
the intensity.
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Fig. 4: Amplitude and phase of the PID-controller’s output used to stabilize the intensity depending
on the signal’s frequency.(Left) Output in dependence of the frequency. For lower frequencies up
to 1 kHz the I-part is fast enough to always saturate the electronics, leading to the maximum peak-
to-peak Voltage Vpp. For higher frequencies the P-part comes into play leading to non-vanishing
amplitude whereas the I-part does not contribute any more. (Right) Frequency dependent phase
between in- and output of the PID-controller. Both parts individually pick up some phase with
increasing frequency. Maybe the phase of both parts together drops because the P-part still has less
phase shift and due to the decreasing gain of the I-part the signal is dominated by the p-Part.

The PID-controller’s inputs were terminated with 50 Ω (R1 and R43 in Fig. 18), the capacitor in
the integral part was tested more in-depth because it is an essential part determining the performance
of the final stabilization. As the intensity should be stable on a timescale of 1µs, the integral part
of the PID-controller was first tested using a 50 pF capacitor. The intensity seemed stable for a
constant input of 3.9 V-6.7 V applied to the PID-controller’s reference input. For higher reference
signals above 6.7 V the error signal increased, below 3.9 V the intensity began to fluctuate. The
intensity was measured with a linear photodiode for reference too.

The resistor in the integral part ranges from 1.8 kΩ to 21.4 kΩ. As the tuneability was assumed to
be not sufficient, the integration time constant using the 50 pF capacitor was ≤ 1µs, the capacitor
therefore was changed to achieve an integration time constant ranging from 0.18µs to 2.14µs, using
a 100 pF capacitor. The configuration was tested applying a square voltage (4.0− 4.5 V, 100 Hz) and
measuring the rise time of the resulting error signal, it was Trise = 132µs. The resistor was put to
the lowest value possible, so another smaller capacitor was tested. An 68 pF capacitor was tested
achieving a rise-time of Trise = 80µs, again the resistor was set to the lowest value. Using a 15 pF
capacitor a rise-time of Trise = 56µs could be achieved. The open-loop gain and phase response were
measured applying a sinusoidal signal to the PID- controller’s input and measuring the resulting
output and phase difference between in- and output. The testing was done applying a Uin,pp = 1 V
sinusoidal frequency, the resulting amplitude was measured with an oscilloscope terminated with
50 Ω. The result is depicted in Fig. 4, it is possible that the absolute phase does not meet the reality,
e.g. if the real signal is shifted by 180 ◦, the result is the same as if it was shifted by −180 ◦. Another
point is that depending on the internal settings of the PID-controller, there is an active inverting
operational amplifier leading to an additional phase of 180 ◦. In Fig. 4 it is assumed that the signal
already is inverted, therefore the phase at ν = 0 Hz already is ∆ϕ = 180 ◦.
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2.3.2. Intensity Stabilization and Lattice Optics

The optical lattice potential arises from four interfering beams, in order to create a stable lattice the
intensity in each beam should be as stable as possible.

The optics setup is depicted in Fig. 1. The beam coming out of the laser passes a λ/2-waveplate in
front of a polarizing beamsplitter cube (PBS), this configuration is used to adjust the overall power
used for the optical lattice potential. Afterwards the beam passes a telescope to adjust the beam
size, this happens in a telescope made of a f = 110 mm plano-convex and a f = 30 mm plano-convex
lens. In the focus in between the two lenses an AOM is placed in order to regulate the intensity.
Behind the telescope the beam gets reflected, passes a shutter, which blocks the beam when another
phase of the experiment is conducted. The zeroth order of the AOM is blocked, the minus first order
maximum is then coupled into a polarization-maintaining fiber.
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F = 1
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384,230.484GHz

L
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u
m
p
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+

F = 2

6.835GHz

F = 1

Fig. 5: The polarization and alignment of the beams and their frequencies. (Left)Alignment. The
coordinate frame is the same as used in all other calculations and descriptions. The brighter red
lines correspond to lattice beams, the arrow head indicates the wave vector’s direction. The darker
red beam is the Raman-pump beam, the polarization is σ− along the wave vector. The reflected and
the transmitted lattice beams subtend an angle of 55 ◦. The polarizations are depicted in gray. The
reflected beams have the same polarization, they subtend an angle of 45 ◦ with respect to the x-y-
plain, the running waves’ polarization coincides with the other’s wave vector. (Right) Frequencies
and level scheme. The lattice is resonant to the F = 2 → F ′ = 2-transition, it therefore provides a
≈ 6.8 GHz-red-detuned lattice. The Raman-pump beam is resonant to F = 1→ F ′ = 0.

The laser power is split by a setup of four subsequent PBS behind the polarization-maintaining
fiber. The first PBS (the top right PBS in Fig. 1) is used to filter the polarization behind the
polarization-maintaining fiber. After this first PBS a λ/2-waveplate is used to rotate the polarization
in front of the second PBS, which transmits the power for two of the lattice beams and reflects the
power for another beam together with the fraction used for stabilization. The latter part then passes
another λ/2-waveplate and hits a PBS, the reflected part is coupled into an polarization maintaining
fiber, a small fraction is transmitted through the PBS and hits the logarithmic photodiode, which
is used to stabilize the intensity. As previously mentioned the polarization stability is achieved by
stabilization of the intensity. Polarization fluctuations are translated into intensity fluctuations by
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the first PBS behind the fiber since only the horizontal polarization component passes through. The
transmitted beam after the second PBS is then split into two beams of which one is coupled into an
polarization-maintaining fiber, the other beam is guided to the chamber in free space, it is reflected
twice and then reflected at an 50 : 50-beamsplitter, where half of the power in that beam is lost.
A mirror underneath the vacuum chamber redirects the beam upwards. A λ/2-waveplate is used to
align the polarization along the transmitted beam. The beams fed into polarization-maintaining
fibers are then collimated by a f = 11 mm lens in order to lead to the same beam waist as the beam
entering the vacuum chamber. The beam waist directly behind the fiber collimator is w0 = 1.1 mm,
for each beam the laser provides power of up to 50 mW. The polarization of the beams is adjusted
by λ/2-waveplates behind the fiber collimators. The alignment is shown in Fig. 5.

The two horizontal beams, of which one is retroreflected, cross under 55 ◦. The polarizations are
set such that the two running waves both have the polarization along the other wave’s direction of
propagation. The standing wave’s polarization encloses an angle of 55 ◦ with respect to the x-y-plain.
The Raman-pump beam enters the vacuum chamber from above and is σ−-polarized. But as the
magnetic field points in z-direction, which also corresponds to the atoms quantization axis, an atom
effectively experiences σ+ light.

2.4. Additional Elements used in this Experiment

To both cancel stray magnetic fields and apply linear magnetic fields in a certain direction, six coils
are mounted around the cuboid vacuum. The coils are approximately rectangular leaving a big
area of the vacuum chamber open for optical access. The currents through the coils are driven by
Elektro-Automatik PS 3016-10B. Each coil has 30 windings and creates an absolute magnetic field
per current of 0.95 G/A, 2.15 G/A and 2.30 G/A0 in x-, y- and z-direction. An additional pair of
coils is used to create the magnetic quadrupole field during the magneto-optical trapping.

3. Explanation of a Cooling Cycle

3.1. Origin of Sidebands

To understand why a tightly-bound atom can change its motional state by a two-photon Raman
transitions we first consider an atom tightly bound in an one dimensional harmonic potential of
frequency ωz/(2π). The atom is addressed by a light field E ∝ exp(i~k · ~r) + exp(−i~k · ~r), ignor-
ing the time dependence, the interaction is described by 〈I,n| exp(±i~k · ~̂z)|I ′,n′〉, I represents the
atom’s internal, n the atoms motional state. The wave vector’s projection onto the atom’s mo-
tion in z-direction is given by ~k · ~̂z = |2π/λ| cos(θ)ẑ = kz ẑ, where θ is the angle between the wave
vector and the z-axis [Eschner et al., 2003]. The interaction operator here represents the process
of absorbing (+) or emitting (-) a photon, the atoms momentum is therefore changed by ±~kz.
Introducing the motional creation and annihilation operators (cf. Equ. 57) the interaction reads
〈I,n| exp(±ikz

√
~/(2mωz){a+ a†})|I ′,n′〉. If the atoms ground state is much smaller than the wave

vector’s projection kzz0 = kz
√

~/(2mωz) = η � 1, the interaction operator can be approximated by

〈I,n|1± iη(a+ a†) +O(η2)|I ′,n′〉 ≈ δn,n′δI,I′ ± iη(
√
n 〈I,n|I ′,n− 1〉+

√
n+ 1 〈I,n|I ′,n+ 1〉). (12)

The approximation is stringently valid if it holds that 〈Ψmotional|k2
zz

2|Ψmotional〉
1
2 � 1 [Wineland

et al., 1998], in an harmonic oscillator potential it yields η
√
n+
√
n2 + n � 1. This limit is called

Lamb Dicke regime, it states that transitions changing the quantum number by more than ∆n = 1
are strongly suppressed. The Lamb Dicke parameter can be rewritten in terms of the recoil energy
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Erecoil = ~2k2z
2m and the oscillation frequency ωz, it reads

η =

√
~k2

z

2mωz
=

√
Erecoil
~ωz

. (13)

In other words - transitions changing the motional quantum number by more than one are strongly
suppressed if the harmonic oscillator’s level spacing is large compared to the kinetic energy an atom
gains if it hits a single photon. This energy is called recoil energy Erecoil. Depending on the Lamb
Dicke parameter even transitions changing the motional quantum number by one can be suppressed.

We have now seen that a tightly bound atom can only change its motional quantum number by
one, therefore each internal state is dressed by a multiplet of motional states. It is assumed, that
the internal excited state is trapped in the same manner. Assuming two states |g〉 and |e〉 with
energy difference ~ω0, and a dipole allowed transition, then the atom’s quantum state can change
from the excited state |e〉 with motional quantum number n to the internal ground state |g〉 but the
motional quantum number can change by zero or one to n, n + 1 and n − 1. The energy difference
and therefore the photon energy can then be ~ω0, ~(ω0−ωz) and ~(ω0 +ωz) for the transitions stated
before. Therefore the central transition now shows blue and red sidebands at ω0±ωz. The motional
sidebands can only be resolved if the linewidth of the transition between the ground and excited
state is smaller than the oscillation frequency.

3.2. The Cooling Process

The atom can be cooled in the system described above, by stimulating the atom on the red sideband
ω0 − ωz. The atom then loses one quantum of kinetic energy on average if the motional quantum
number doesn’t change on average during spontaneous emission.

The setup described above is used to implement another technique to achieve a sample of atoms
cooled to the 3D-motional ground state of an optical lattice. The method has been explored in
an three-dimensional optical lattice by [Kerman et al., 2000] and [Treutlein et al., 2001]. Previously
Raman sideband cooling had been demonstrated in one- and two-dimensional optical lattices [Vuletić
et al., 1998; Hamann et al., 1998]. To understand the mechanism of cooling we at first consider the
simple case, in which the optical potential for all three |F = 1,mF 〉 magnetic hyperfine levels is
identical. We than have the situation depicted in Fig. 6.

15



ℏωzn=0
n=1
n=2
n=3
n=4
n=5
n=6

mF=-1 mF=0 mF=1F=1

F=1

σ+

π

mF=0

Fig. 6: Simple scheme for degenerate Raman sideband cooling. The lattice light induced degenerate
two-photon transitions between adjacent magnetic hyperfine- and harmonic oscillator-levels (double
arrows). Atoms are pumped (solid, dotted, dashed arrows) to mF = 1 from where two-photon
transitions take place reducing the motional quantum number. The mF ,n and mF − 1,n − 1-states
are shifted to degeneracy by the Zeeman effect.

Neglecting the light-shift introduced by the Raman-pump beam for the |F = 1,mF = −1〉 and
|F = 1,mF = 0〉 levels, we consider an atom initially prepared in |F = 1,mF = 1〉.

The atoms were loaded into the lattice after the MOT-phase and optical pumping into the the
F = 1 hyperfine state. The sample is initially not spin polarized but nevertheless considering the
evolution of an individual atom in |F = 1,mF = 1〉 also covers the evolution of an atom in the other
two states. The atom’s motional quantum state in the lattice is denoted by n. We will write the
complete state as e.g. |F = 1,mF = 1,n = 5〉 omitting the F =, etc. in the further discussion. A
magnetic field shifts the adjacent states |1,mF ,n〉 and |1,mF + 1,n− 1〉 into degeneracy allowing
degenerate two-photon Raman transitions between these two states. The two-photon coupling is
induced by the lattice light. So the atom initially in |1,1,5〉 now arrives in |1,0,4〉, where it can
conduct a two-photon transition either back to |1,1,5〉 or further to |1,− 1,3〉.

As the atom has lost two quanta of kinetic energy in |1,− 1,3〉, it would be favorable to admit
a further reduction of the kinetic energy, hence the atom is optically pumped by σ+-light to the
F = 0-state from where it decays either to |1,0,3〉 or to |1,1,3〉. The motional quantum number does
not change on average since the atom is in the Lamb-Dicke regime. From that point on the atom
conducts the same processes over and over until it finally reaches the dark-state |1,1,0〉. If the atom
reached the motional ground state in |1,0,0〉, it would not be able to get to the dark-state, hence the
optical pumping also has a small π-component, which pumps the atom to F = 0 from where it will
decay to the dark-state at some point. |1,1,0〉 is called dark-state because the optical pumping with
its polarization does not couple to this state (ignoring transitions to higher F -levels). In a perfect
isotropic potential structure this situation would occur for all three directions but as this is not the
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case in the situation discussed below further assumptions are made in subsection 4.2.

4. Calculation of the Lattice Potential

4.1. Derivation of the Light-Induced Potential for a 2-Level System

The potential arises from the interaction of an atom with an electric field. In the special case of
an atom interacting with a fast oscillating electric field of light it can be explained considering a
two-level atom coupled to a classical monochromatic light-field

~E(~r, t) = Re[ ~EL(~r) exp(−iωLt)]. (14)

The resulting Hamiltonian for the atom with ground state |g〉 and excited state |e〉 reads

ĤA = ~ωe |e〉 〈e| , (15)

where the ground state’s energy is zero and the excited state’s energy is Ee = ~ωe. The coupling
between the two states is created by the interaction of the atom and the field. The Hamiltonian is
given by

ĤI = − ~̂d · ~EL(t) =
~Ω

2
exp(iωLt) |g〉 〈e|+

~Ω∗

2
exp(−iωLt) |e〉 〈g| (16)

in the dipole-approximation, where the light’s wavelength is long compared to the extent of a single

atom, so that the field does not vary on the scale of an atom. Here ~̂d = −e~r denotes the transition
dipole moment. The last term assumes the rotating-wave-approximation. This approximation is valid
if the detuning ∆ = ωL−ωe � ωe is relatively small compared to the resonant transition, this is linked
to the fact that the assumption of a two level system is valid. The coupling strength Ω = 〈g|e~r· ~EL|e〉/~,
called Rabi frequency, also has to be small compared to the optical frequency |Ω| � ωe, so that the
rotating-wave-approximation is still valid. Writing the atomic state as Ψ(t) = cg |g〉+ce |g〉, plugging
it into the Schrödinger equation

i~∂tΨ(t) = (ĤA + ĤI)Ψ(t) (17)

and using the substitution c̃e = ce exp(iωLt), one can obtain the resulting Hamiltonian

Ĥ = −~(ωL − ωe) |e〉 〈e|+
~Ω

2
|g〉 〈e|+ ~Ω∗

2
|e〉 〈g| . (18)

This result can be written in matrix form, we obtain

Ĥ =

(
0 ~Ω

2
~Ω∗

2 −~∆

)
, (19)

where ∆ = ωL − ωe is the detuning from resonance. The resulting dynamics can be calculated with
a density matrix

ρ =
∑
m,n

|m〉 ρm,n 〈n| , (20)

where 〈m| and 〈n| denote an orthonormal basis, here it reads

ρ =

(
ρgg ρge
ρeg ρee

)
=

(
|cg|2 cg c̃

∗
e

c̃ec
∗
g |c̃e|2

)
. (21)
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Since an atom can also decay spontaneously from the excited state, additional terms are added to
the Hamiltonian, these can be derived via Weisskopf-Wigner theory of spontaneous emission [Scully
and Zubairy, 1997]. The additional Lindblad operator

L̂ =

(
Γρee −Γ

2 ρge
−Γ

2 ρeg −Γρee

)
, (22)

describes the spontaneous decay between the excited and ground state, where Γ = ω3
e |〈 ~̂d〉|

2

3πε0~c3 denotes
the natural line width. We assume that the rates at which the atom’s state changes act independent
and can simply be added [Cohen-Tannoudji et al., 2004]. The von Neumann equation

∂tρ = − i
~

[Ĥ,ρ] + L̂ (23)

now yields four coupled differential equations, of which only 2 are independent as it holds that
ρee + ρgg = 1 and ρge = ρeg∗. Therefore one has to find a solution to two coupled differential
equations.

∂tρgg = Γρee +
i

2
(Ω∗ρge − Ωρeg) (24)

∂tρee = −Γρee +
i

2
(Ωρeg − Ω∗ρge) (25)

∂tρge = −
(

Γ

2
+ i∆

)
ρge +

i

2
Ω(ρgg − ρee) (26)

∂tρeg = −
(

Γ

2
− i∆

)
ρeg +

i

2
Ω∗(ρee − ρgg) (27)

A steady state solution makes sense if the atom’s internal evolution is faster than the timescale in
which it travels over the distance of the light’s wavelength but not for timescales in which it changes
its internal state, ergo ωL � t−1 � max[Γ,Ω]. The steady state solution can be obtained setting the
time derivatives ∂tρi = 0,

ρee =
|Ω|2

Γ2 + 4∆2 + 2|Ω|2
(28)

ρge =
(iΓ + 2∆)Ω

Γ2 + 4∆2 + 2|Ω|2
. (29)

To derive a (conservative) force and from that on a potential, we consider a semi-classical force.
Noting that ∂t~p = ~F , we can find the average force expectation value ∂t 〈p̂〉 with the help of the
Ehrenfest theorem

∂t 〈p̂〉 =
1

i~
〈[p̂,Ĥ]〉

= −〈[~∇,Ĥ]〉
= −Tr[ρ̃[~∇,Ĥ]].

(30)

The Hamiltonian in this case does not only respect the atom’s internal degrees of freedom but also the
external ones, therefore the Hamiltonian Ĥres consists of the spontaneous decay Hamiltonian Ĥspont

as well as the atom-light interaction Hamiltonian Ĥint and the kinetic energy term of the atom

Ĥres =
p̂2

2m
+ Ĥspont + Ĥint. (31)
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We note that the momentum and position operators are now acting on the atom’s momentum and
position, therefore the electric field can depend on the position, therefore also the coupling strength.
We now plug Equ. 31 into Equ. 30, it yields

〈~F 〉 = −Tr[ρ̃[~∇,Ĥint]]

= −~∇
(
~Ω

2

)
= −~

2

[
(~∇Ω(~r))ρeg + (~∇Ω∗(~r))ρge

]
with Ω(~r) = |Ω(~r)| exp(iφ(~r))

= −~
{

(~∇|Ω(~r)|) Re[exp(iφ(~r))ρeg]− |Ω(~r)|(~∇φ(~r)) Im[exp(iφ(~r))ρeg]
}

Using the steady-state solutions from Equ. 29 we obtain for the semi-classical force

〈~F 〉 = −~

(
∆~∇|Ω(~r)|2

Γ2 + 4∆2 + 2|Ω|2
+
|Ω(~r)|2Γ~∇φ(~r)

Γ2 + 4∆2 + 2|Ω|2

)
, (32)

we note that the time dependence is still there but its hidden in ρge. The first term corresponds
to a reactive force, the second term to dissipative force since it varies with the phase of the Rabi
frequency, which depends on the electric field’s phase. Another approach to derive this result would

be to consider the driven atom as having an induced dipole moment 〈 ~̂d〉, the resulting Potential would

then be U(~r,t) = 〈 ~̂d〉 ~E(~r,t). In the far-off-resonant limit Ω,Γ� ∆ one can rewrite the force as

〈~F 〉 = −~

(
~∇|Ω(~r)|2

4∆
+
|Ω(~r)|2Γ~∇φ(~r)

4∆2

)
. (33)

We can then find a (time averaged) potential using F = −~∇U(~r), rewriting |Ω|2 in terms of the line

width Γ and the intensity I(~r) =
ε0c| ~E(~r)|2

2 , the bar denotes time averaged value, the first term reads

Udip(~r) =
3πc2Γ

2ω3
e∆

I(~r), (34)

where c denotes the speed of light. We see that the potential has a minimum at the maximum
intensity for negative detuning and vice versa.

4.2. Resulting Lattice and Approximation

4.2.1. The Polarizability Tensor

In a real system the 2-level approximation does often not describe the full physics. An easy approach
is to introduce the coupling of a (optically pumped) hyperfine ground state F to multiple hyperfine
excited states F ′ via an light-shift operator [Deutsch and Jessen, 1998]

Û(~r) = ~EL(~r)∗
∑
F ′,m
m′,m′′

|F,m〉 〈F,m| ~̂d |F ′,m′〉 〈F ′,m′| ~̂d |F,m′′〉 〈F,m′′|
~∆F→F ′

~EL(~r), (35)

here ∆F→F ′ denotes the detuning from the F → F ′-transition. It is composed of the electric field
and a polarizability tensor. This tensor contains the coupling terms between different states coupled
by two photons. We can rewrite this expression in terms of reduced matrix elements, Wigner 3-j and
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Wigner 6-j symbols separately for each polarization component σ. The common transition symbols
σ+, π and σ− correspond to σ = −1, σ = 0 and σ = 1. The Wigner 3-j symbols yield zero unless it
holds that mF = m′F + q.

〈F,m|d̂σ|F ′,m′〉 =(−1)F−m
√

2F + 1

(
F 1 F ′

−m σ m′

)
〈F‖ ~̂d‖F ′〉 (36)

=(−1)F−m+F ′+J+1+I
√

(2F + 1)(2F ′ + 1)(2J + 1)

×
(
F 1 F ′

−m σ m′

){
J J ′ 1
F ′ F I

}
〈J‖ ~̂d‖J ′〉

(37)

〈F ′,m′|d̂−σ′ |F,m′′〉 =(−1)F
′−m′+F+J ′+1+I+σ′

√
(2F + 1)(2F ′ + 1)(2J + 1)

×
(
F ′ 1 F
−m′ −σ′ m′′

){
J ′ J 1
F F ′ I

}
〈J ′‖ ~̂d‖J〉 .

(38)

For a component σ of a tensor operator of rank k it holds that (T
(k)
σ )† = (−1)σT

(k)
−σ having that in

mind one can derive a link between the two reduced matrix elements from above [Steck, 2007], it
follows

〈J ′‖T (k)‖J〉 = (−1)J
′−J
√

2J + 1

2J ′ + 1
〈J‖T (k)‖J ′〉∗ . (39)

Together with symmetries of the Wigner 6-j symbols [Edmonds, 1957] [Edmonds, 1957] [Edmonds,
1957]we can write the whole expression in a more compact form

〈F,m|d̂σ|F ′,m′〉 〈F ′,m′|d̂−σ′ |F,m′′〉 =

(−1)2I+2J ′−m−m′+σ′(2F + 1)(2F ′ + 1)(2J + 1)

×
(
F 1 F ′

−m σ m′

)(
F ′ 1 F
−m′ −σ′ m′′

){
J J ′ 1
F ′ F I

}2 ∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣2 (40)

Note that the inversion of the second polarization term σ′ implicates that the polarization is now
always in the same frame, e.g. a Raman transition mF → mF + 1 → mF corresponds to σ+ light
in both cases. Evaluating the sum in Equ. 35 for each polarization combination yields nine matrices
(cf. Appendix B). We assume that the introduced Zeeman splitting and the splitting between the
excited hyperfine states is much smaller than the laser detuning from resonance

∆Zeman � ∆HFS′ � ∆. (41)

The detuning in Equ. 35 then simplifies to one fixed value ∆. The sum can be evaluated on a sub
space as big as possible also taking n = 6, etc. states into account, but as we are interested in the
coupling between the |F = 1,mF 〉 levels we sum over all excited states of the 52P3/2 state and take
mF and m′′F of the F = 1 ground state. This assumption is valid, if the detuning from other excited
states is huge compared to the detuning from resonance of one specific transition. The detuning from
the D1-line for example is in the order of THz while the detuning from the D2 line is on the order of
GHz.

An alternative representation of the light shift operator Equ. 35 in the limit of a detuning greater
then the excited state hyperfine splitting reads

ÛF (~r) =

∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣2
12~∆Fmax→F ′max

(
2
∣∣∣ ~EL(~r)

∣∣∣21̂ + i[ ~EL(~r)∗ × ~EL(~r)]
~̂F

F

)
. (42)
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The double bars indicate the reduced matrix element [Steck, 2001], the states Fmax describe the
stretched states Fmax = I + J where I and J are the quantum numbers for nuclear spin and total

angular momentum. 1̂ represents the identity operator, and
~̂F
F is the (dimensionless) total spin

operator. We can see that there are off-diagonal terms in the potential (cf. Appendix B). These
terms introduce the coupling between different magnetic hyperfine states, the potential therefore
depends on the magnetic state of the atom. The first term of ÛFmax(~r) can be rewritten to obtain
Equ. 34 again.

Evaluating Equ. 35 for each polarization combination separately, we obtain nine three dimensional
square matrices for the subspace of the lower hyperfine ground state F = 1. With two-photon
transitions coherences between levels with ∆mF = 0, ± 1,±2 occur, but in the limit of infinite
detuning the coherences for ∆mF = ±2 vanish. The resulting matrices are depicted in Appendix B.
Calculating the transition frequencies and potentials can be done in the usual Cartesian coordinate
system or in the spherical basis. The spherical basis vectors are made up of the Cartesian basis
vectors as follows

~e+1 = − 1√
2

(~ex + i~ey)

~e−1 =
1√
2

(~ex − i~ey)

~e0 = ~ez,

(43)

it holds that ~eq
∗ = (−1)q~e−q. (44)

A vector field ~F = Fx~ex + Fy~ey + Fz~ez can be transformed to the spherical basis by a linear trans-
formation F+1

F−1

F0

 =
1√
2

−1 i 0
1 −i 0

0 0
√

2

 ·
FxFy
Fz

 . (45)

Applying this transformation to the electric field we obtain the electric field components for each
polarization. We see that the two circular polarized beams always have the same intensity at each
point in space, therefore the diagonal part of the resulting potential is the same for all mF states.
The quantization axis points along the magnetic field in positive z-direction. The resulting potential
is calculated in the following.

4.2.2. Calculation of the Lattice Characteristics

The potential can be designed such that the potential shows a periodic structure in each direction.
A simple setup could consist of four interfering beams to create a three dimensional lattice-like
structure. This resulting potential landscape is called optical lattice. The lattice described in sub-
subsection 2.3.2 can not be described as aesthetic as an optical lattice derived from orthogonal beams
could be described. Nevertheless we can calculated the characteristics of that potential numerically.
In principle there happen a lot of fascinating phenomena if an atom is stored in an optical lattice,
e.g. an atom can tunnel through the potential barrier or it can be excited to a state which is not
trapped and simply fly away and be trapped again after a relaxation process. But as we are inter-
ested in cooling a sample of atoms we will consider a regime, where we can neglect the coupling of
the internal state and the external (movement) state. In order to motivate this approximation we
will first consider the potential produced by four interfering beams. Each beam is collimated to a
1/e2 beam waist w0 = 1.1 mm and carries Pj = 50 mW of power, the laser is ∆ = −6.835 GHz de-
tuned from resonance of the D2-line. To gain some intuition for the overall structure, the potential’s
energy-isosurfaces are depicted in Fig. 7.
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Fig. 7: The resulting iso-energy-surfaces solving Udip(~r) = −1800Erecoil in the given configuration.
The principal axes of the depicted ellipsoid do not coincide with the lights’ propagation axes, therefore
the lattice has to be approximated along the principal axis near the potential minima.

The four beams’ wave vectors and electric fields read as follows,

~krefl, in = k0 · (sin(α),− cos(α), 0)τ (46)

~ktrans, horz = k0 · (− sin(α),− cos(α), 0)τ (47)

~ktrans, vert = k0 · (0,0,1)τ (48)

~Erefl, in = E0 ·
1√
2

(cos(α), Sin(α), 1)τ (49)

~Etrans, horz = E0 · (0,0,1)τ (50)

~Etrans, vert = E0 · (− sin(α),− cos(α), 0)τ , (51)

k0 = 2π
λ is the wave vector’s absolute value, E0 denotes the maximum electric field amplitude. The

angle α is the absolute value between each beam and the y-axis. The resulting electric field distri-
bution is then calculated as a sum over all four beams, the reflected beam has the same polarization
and the opposite wave vector −~krefl, in compared to the incoming beam. The resulting field made of
4 Gaussian beams reads

~EL(~r) =
∑
j

~Ej

1− i |r̂·
~kj/k0|−dj
zR

exp


∣∣∣r̂ · ( ~Ej

E0
×

~kj
k0

)∣∣∣2 +
∣∣∣r̂ · ~EjE0

∣∣∣2
w2

0

(
1− i |r̂·

~kj/k0|−dj
zR

)
 exp[i(~kj · ~r − djk0)], (52)
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where r̂ is a matrix with x,y,z on the diagonal, dj is the distance from the beams focus, zR =
πw2

0
λ is the Rayleigh range and w0 the beam waist [Boyd, 2008]. The index j represents the four

beams’ indices. The distance from the focus is assumed to be the same for all three running waves
drunning = 20 cm and the retroreflected beam travels twice that distance after the fiber collimator
ergo dreflected = 40 cm.

The potential then consists of a local lattice like part and a part creating a spacial confinement
in the focus of the beam. The first part has a periodic structure where the potential minima are
approximately distanced by λ along the running beams and by λ/2 along the reflected beam. This
result is exact for a lattice made of perpendicular beams. The resulting lattice can be plotted in
different plains, the result is depicted in Fig. 8.
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Fig. 8: The lattice potential in different plains. The remaining sample point is chosen such that
the potential has a local minimum there. (Top) The potential in the x-y-plain, the z-sample point
corresponds to zS ≈ 0.2λ in Fig. 7. (Middle) x-z-plain, yS ≈ 0.4λ. (Bottom) y-z-plain, xS ≈ 0.0λ.

Looking at the potentials in Fig. 8, we see that the shape should correspond to an three dimensional
harmonic oscillator around the minima. Therefore we fit a hypersurface around the potential mini-
mum and transform the coefficient array to diagonal form (according to the principal-axis-theorem)
to eventually obtain the spring constant and therefore the oscillation frequency. We will consider
later, why it makes sense to approximate the potential as an harmonic oscillator. The resulting
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oscillation frequencies are depicted in Fig. 9, the lattice along the coordinate axis is also shown. The
maximum oscillation frequencies as well as the lattice depth also stated in Tab. 1.
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Fig. 9: Potential and harmonic approximation and spacial behavior of the oscillation frequencies.
(Top Left) Lattice potentials along the coordinate axis. The depicted approximation is also correct
in this frame due to the point symmetry in the x-y-plain with respect to the origin, this symmetry
only holds for plain waves exactly but is also mostly valid in the center of a Gaussian beam. Therefore
one principal axis is always pointing in z-direction. There are less bound vibrational states along the
less confining z-axis than in the other directions. (Top Right) The Oscillation frequency decreases
along the x-axis if the distance from the perfect intersection of the beams gets bigger due to their
Gaussian beam shape, the result is similar to the variation along z. (Bottom Left) The oscillation
frequency along the y-axis decreases slower than in x- or z-direction. (Bottom Right) Oscillation
frequency along the z-axis.
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Tab. 1: Resulting oscillation frequencies and lattice depths along the principal axis ri around a central
minimum. Calculated for parameters w0 = 1.1 mm Pj = 50 mW and ∆ = −6.835 GHz

Quantity r1 r2 r3

Lattice depth [Erecoil] 1976 1879 1195

Lattice depth [µK] 357.6 340.1 216.4

Oscillation frequency ω [2π·kHz] 254.5 104.5 90.1

Level spacing ~ω [µK] 12.2 5.0 4.3

4.2.3. Motivating the Harmonic Oscillator Approximation

As an atom is not a classical particle, it’s external, mechanical state has to be calculated quantum
mechanically. In a periodic potential the wave function shows the same periodicity as the potential
(Bloch’s theorem [Bloch, 1929]), if a particle is localized a description in terms of delocalized Bloch
waves makes less sense since we have a well localized wave function around each lattice site. The
resulting wave function can be described in terms of Wannier functions, which also account for
tunneling between neighboring lattice sites. To motivate the harmonic approximation consider a one
dimensional periodic potential, e.g. an atom in the light field of a standing wave,

U(x) = U0 sin2

(
π
x

λ/2

)
(53)

If the atoms kinetic energy is sufficiently small, it will be localized around a potential minimum, thus
we can expand the potential in the dimensionless parameter x

λ/2 which yields

U(x) ≈ U0

(
π
x

λ/2

)2

. (54)

The same approach is still valid for a multidimensional periodic structure. In a three dimensional
harmonic oscillator potential the Hamiltonian

Ĥmech =
~̂p 2

2m
+
m

2

3∑
q=1

ωir
2
i (55)

describes the atom, where ~̂p = −i~~∇ is the momentum operator, m the mass of an atom and the
index q describes three (orthogonal) dimensions with oscillation frequency ωq. The Hamiltonian can
be separated in each direction therefore the resulting states are product states. The solution are the
well known number states |n1〉 |n2〉 |n3〉, the Hamiltonian can be rewritten as

Ĥmech =

3∑
q=1

~ωq(a†qaq +
1

2
). (56)

Here we introduced the creation and annihilation operators a†q and aq, the link between these two
notations is given by

aq =

√
mωq
2~

(
rq +

i

mωq
p̂q

)
. (57)

The creation operator creates one energy quantum of ~ωq in direction q, the adjoint annihilation
operator removes one quantum.
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4.2.4. Raman Coupling

We saw in subsection 3.1 that adjacent vibrational levels are coupled by light. All beams have the
same (absolute value) wave vector. The momentum transfer after the two photon process to the atom
depends on the angle under which the photons interact with the atom. If the absorbed and emitted
photon propagate in the same direction no momentum will be transferred, while the atom gains 2~k
of momentum if the emitted photon propagates in the opposite direction of the absorbed photon.
We will therefore assume an average value of k, furthermore that each principal axis of a three
dimensional potential minimum in the lattice couples to one beam. This beam would then stimulate
two photon processes transferring momentum to the atoms. In principle one should consider the
radiation pattern of the atom and derive an expression for the average wave vector difference but
due to the fact that we also have uncertainties in the magnetic field changing the polarization of the
electric fields the assumption of ~k will be sufficient.

We assumed that the atoms are well localized around each potential minimum, to estimate the
magnitude of the coherent transitions between two levels we will calculate the electric field strengths
at a lattice minimum and sum over all couplings induced by each polarization combination. For
example an atom in mF = 1 having (n1,n2,n3) motional quanta will be coupled to mF = 0 by
combinations of π, σ+ and σ−,π.

The electric field components in a central minimum of the lattice (Pj = 50 mW, e−2-radius =
1.1 mm, ∆ = 6.835 GHz) are

E+1 = (−3763 + 3378i) V/m (58)

E−1 = (3763 + 3378i) V/m (59)

E0 = 7489 V/m. (60)

To calculate the coupling we take the results from Appendix B, as already stated we’ll consider the
coupling between mF = 1 and mF = 0.

Ucoupling =

∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣2
~∆

(
E∗0 〈F = 1,mF = 1|Mπ,σ+ |F = 1,mF = 0〉E−1

+ E∗+1 〈F = 1,mF = 1|Mσ−,π|F = 1,mF = 0〉E0

)
= (134 + 120i)Erecoil︸ ︷︷ ︸

from the first term

+ (134− 120i)Erecoil︸ ︷︷ ︸
from the second term

= 268Erecoil

(61)

As already shown in subsection 3.1 the atom does also change its motional quantum number in
some cases. The transition probability scales with the Lamb-Dicke parameter ηq and the number of
quanta in each direction nq, with the oscillation frequencies from Tab. 1 we find

η1 = 0.12

η2 = 0.19

η3 = 0.20

(62)

The sum over all three directions yields the coupling strength for transitions lowering the motional
quantum number

Ucoupling · (
√
n1η1 +

√
n2η2 +

√
n3η3) = (

√
n1 · 33 +

√
n2 · 51 +

√
n3 · 55)Erecoil (63)

= (
√
n1 · 123 +

√
n2 · 192 +

√
n3 · 207) h · kHz, (64)

h denotes Planck’s constant. The couplings mF = 1 → m′F = 0 and mF = 0 → m′F = 1 are
equal since we did not take the individual detuning between the single magnetic hyperfine states into
account. That fact in mind we consider the case of mF = −1→ m′F = 0. The two states get coupled
by π,σ− light as well as σ+,π because this light couples to the same states like in the previous case
just with opposite sign.
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4.2.5. Linewidth of the Raman transitions

The linewidth of the Raman transition is important since it determines whether a transition between
adjacent magnetic resolves the level structure of the motional states. The spontaneous transition
rate induced by the polarization component σ is [Cline et al., 1994]

γσ,F,mF→F ′,m′F =
6πc3(ω0 + ∆)3ε0|Eσ|2

h
∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣4

∣∣∣∣∣∣ Γ

ω3
0∆

∑
σ′,F ′′,m′′F

〈F ′,m′F |d̂σ′ |F ′′,m′′F 〉 〈F ′′,m′′F |d̂σ|F,mF 〉

∣∣∣∣∣∣
2

.

(65)

The sum term can again be calculated in terms of reduced matrix elements, with the use of the
matrices calculated before we can rewrite the expression

γσ =
|Eσ|2

∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣4(ω0 + ∆)3

~3∆212π2ε0c3

(∑
σ′

Mσ′,σ

)
◦

(∑
σ′

M∗σ′,σ

)
, (66)

A ◦B denotes the Hadamard or element-wise product of two matrices A and B of same dimensions.
The total transitions are obtained by summing over all polarization components. The term can be
understood as absorbing a photon from the laser field of polarization σ and then emitting a second
photon spontaneously. The spontaneous scattering matrix reads

γ =

2392 149 0
149 2392 149
0 149 2392

Hz. (67)

The atoms get scattered ≈ 150 times each second spontaneously, therefore the motional energy levels
are well resolved by the spontaneous Raman process. The diagonal elements correspond to Rayleigh
scattering.

4.3. Scattering Rate and Estimated Cooling Rate

Another effect occurs if an atom interacts with a classical light field - power broadening. The absorp-
tion line gets wider with larger intensity driving the transition. Equ. 28 describes the population of a
two level atom depending on the detuning ∆, linewidth Γ and Rabi frequency Ω. The Rabi frequency
only appears squared, its square value is proportional to the intensity. With greater intensity occurs
more off resonant scattering. Scattering which is not necessary to pump atoms in order to provide
further reduction of the motional quantum number introduces heating. The effect of heating is an
essential value if it comes to the estimation of heating in contrast to the provided heating.

The lattice detuning exceeds the excited states’ hyperfine splitting, so it couples to all levels of
the excited states’ hyperfine states. The σ+ and σ− components of the lattice light have equal
intensities, therefore they pump atoms at the same rates (neglecting the small detuning resulting
from the Zeeman shift). We account for that by multiplying each ground state population in the
two-level approximation by a factor of 1/3. The ground state of F = 2 is assumed to have no
population. The picture then reduces to the two-level system made up of each |F = 1,mF 〉 level
coupled to the whole 52P3/2 manifold. The squared Rabi frequency for this transition is made of the
sum of the three polarization components,

Ω2
res =

∑
σ={−1,0,1}

|Eσ|2
∑
F ′,m′F

∣∣∣〈F = 1,mF |d̂σ|F ′,m′F 〉
∣∣∣2 = (384.5 · 2πMHz)2 (68)
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The ground state population is close to unity, ≈ 0.1% of the atoms are in the excited state, resulting
in a scattering rate of 4.8 · 2π kHz. Taking less restrictive assumption with the use of [Grimm et al.,
2000]

Γscatter(~r) =
Γ

~∆
UDip(~r), (69)

we obtain a scattering rate of 6.9 · 2π kHz. From this on we can calculate the expectable heating
due to off resonant scattering of lattice light. The heating rate depends on the one hand on the trap
geometry, on the other hand on the scattering rate and therefore also on the detuning and intensity.
We assume that the heating occurs isotropic, which is not necessarily true since the absorption due
to the laser happens in specified directions, whereas spontaneous emission is isotropic. The heating
rate is discussed more in detail in [Grimm et al., 2000], it is given by

Ṫheat =
2

3

TrecΓscatter
1 + κ

, (70)

where the recoil temperature is Trecoil = ~2k2/(mkB) and κ is a geometric factor, e.g. for a three
dimensional harmonic trap it is κ = 1. With the values given above we obtain Ṫheating = 827µK/s.

The levels do also shift due to the repumper, since it is resonant to F = 1 → F ′ = 0 the only
level affected by the (almost) pure σ+ light is the mF = −1 level. The energy eigenvalues of a light
dressed state result from diagonalizing Equ. 19, they read

Edressed± =
~
2

(−∆±
√

∆2 + |Ω|2). (71)

If the laser is on resonance the level gets shifted by ~|Ω|/2. For the Raman-pump beam with 1 mW
power and an beam waist of 1.1 mm we obtain ΩRaman−pump = 13.9 · 2πMHz, which shifts the levels
by ~ΩRaman−pump/2 = 6.95 · hMHz.

To have a rough estimation of the scattering rate induced by the Raman-pump beam we assume
that the transition is saturated and calculate the scattering rate similar to the two level approximation

as ΓRaman−pump = 2
(

ΩRaman−pump
Γ

)2
· Γ

2 = 31.8 · 2πMHz. This value is an absolute upper bound of

the scattering rate for this transition since the atoms will get pumped to the other mF states. The
actual scattering rate does depend on the Raman transitions to the mF = −1 level. For reference a
power of 1µW would result in an scattering rate of 31.9 kHz, which is closer to the values reported
in [Fölling, 2003; Kerman et al., 2000]. The transport rate from mF = −1 to mF = 1 is by a factor
1/3 smaller than the scattering rate since the relatxation from the F = 0,mF = 0 level occurs with
equal probability to each of the mF ground states. Relaxation to F = 2 is neglected in this brief
explanation.

The cooling efficiency should be determined by the two-photon Raman transitions since the Raman-
pumping should be chosen to be much faster than the transitions lowering the motional quantum
number. Each Raman transition removes - in the ideal case - one quantum of kinetic energy, assuming
some mismatch and transitions between identical motional states we take half the transition rate
between adjacent mF levels. The geometric trap frequency is ω̄ = 3

√
ω1 · ω2 · ω3 = 133.8 · 2π kHz,

together with the geometric transition frequency of ν̄trans = 170 kHz between adjacent mF levels
with the motional quantum numbers n and n− 1 the cooling rate results in Ṫcooling = 0.54 mK/s.

5. Conducted Measurements

An obvious sign of cooling nor heating was not observed to date - ipso facto the experimental steps
and measurements conducted so far will be presented.
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5.1. Magnetic Field Nullification

Stray magnetic fields disturb an atomic experiment due to the Zeeman effect. Therefore it is con-
venient to nullify stray magnetic fields as good as possible. In the presented work this was done
utilizing microwave spectroscopy of atoms held in a far-off resonant dipole trap (ODT). The atoms
were initially trapped in a magneto-optical trap and then loaded into the ODT. Subsequently the
atoms were pumped to F = 1 and stored in the ODT. The population of atoms in F = 2 was probed
using single photons resonant to F = 2 → F = 3 of the D2-line. The photons were detected with
Laser Components Count single photon counters.

F = 2

F = 1

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

σ−

π

σ+

σ−

π

6
.8
3
5
G
H
z

σ+

σ−

π

σ+

Fig. 10: Level scheme of a F=1→ F’=2 transition. The transition is driven by unpolarized microwave
radiation. The levels are shifted due to the linear Zeeman effect by a magnetic field along the positive
quantization axis. The two hyperfine levels have a different g-factor and therefore split in opposite
directions. The individual transitions split different, therefore a variety of absorption features was
observed. The mF = 0→ m′F = 0 does not shift with magnetic field and is a suitable starting point
while looking for the first signal.

The transition between the F = 1 and F = 2 hyperfine states was driven by a Anritsu MG3962C

signal generator attached to a microwave antenna. The variety of possible transition of a Zeeman
shifted transition is depicted in Fig. 10 The nullification was done such that the microwave frequency
was swept around 6.835 GHz and if the microwave gets absorbed it drives atoms to F = 2. This
population is then probed by the probe photons. The polarization is not well defined since the
magnetic field’s orientation is not known, therefore the in frequency outermost transition corresponds
to the most sensitive transition regarding the magnetic field strength. The transition F = 1→ F = 2
has a very small transition probability therefore the time in which the microwave is on has to be
timed very precisely. This time is initially guessed and later determined by time resolved population
measurements resulting in Rabi oscillations. The result is depicted in Fig. 11, the fit used was
f(t) = U0 sin2(Ωt) exp(−t/τ).

The procedure to find the currents through the coils at which the magnetic field was as low as
possible was such that one transition of the spectrum was resolved while the magnetic field in one
direction was altered. This procedure was done for each direction - corresponding to two coils -
iterative. A sample measurement is depicted in Fig. 11.
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Fig. 11: Magnetic field nullification. (Left) Rabi oscillations between F = 1 and F = 2 driven by
resonant radation. The resulting Rabi frequency obtained by a fit is Ω = 1.14 ·103 s−1. The measure-
ment was done sitting on the fewest shifted dip corresponding to a mF = 0 → m′F = 1 transition.
(Right) Absorption dips for different magnetic field settings. The dip probably corresponds to a
mF = 0→ m′F = 1 transition as it is the fewest shifted dip. The detuning is relative to the hyperfine
splitting between F = 1 and F = 2. The dips are all shifted to zero detuning as good as possible,
this sample measurement was taken for the magnetic field along the y-axis.

The remaining magnetic field was on the order of Bres = 12 mG.

5.2. Polarization Stability

To estimate the polarization instabilities of the fibers in the setup the polarization stability of a
polarization-maintaining fiber was tested with a separate setup. The setup consisted of a rotation
mounted polarizing beamsplitter in front of a fiber collimator aligned such that the axis of the
beamsplitter and fiber coincide as good as possible and another rotation mounted cube behind the
fiber was used to detect the fluctuations of the unwanted polarization component. The cube behind
the fiber had its transmission axis perpendicular to the polarization coming out of the polarization-
maintaining fiber. The cubes were used because they provide easy access to polarization extinction
ratios of 10−3. The powers are measured with power meters after the cube behind the fiber. The
terms good and bad polarization refer to the polarization along the axis and perpendicular to the
axis of the polarization-maintaining fiber. The polarization was measured over a timespan of several
hours. The measurement depicted in Fig. 12 was taken when the conditions were probably nearly
ideal since the temperature was very stable and no mechanical stress was applied through vibrations.
The polarization extinction ratio is here calculated as good polarization divided by bad polarization,
e.g. if the wanted or good polarization had power Pg and the other part power Pb, it would read

PER = 10 log10

(
Pg
Pb

)
. (72)

The polarizing beam splitter e.g. has a power extinction ratio of −30 dB, therefore the maximum
extinction behind the fiber could only be that value. In Fig. 12 effects of the cube itself, e.g. the
different transmission and reflection coefficients, are not respected. The cube in the rotational mount
in front of the fiber was aligned by moderate heating of the fiber and subsequent reduction of the
oscillations observed, similar to those in Fig. 12.
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Fig. 12: Polarization stability measured 25.05.2015. (Left) Powers of the two polarization compo-
nents. The two polarization components are measured individually, the decreasing over all power
can maybe be explained by a change of the fiber coupling efficiency. (Right) Polarization extinction
ratio. The polarization is not as stable as the cube is. The oscillations probably appear due to
thermal effects, as this is also the effect occuring while heating and aligning the fiber.

5.3. Aligning the Raman Lattice Beams

The laser beams creating the optical potential should be overlapped with the atoms after previous
cooling steps as good as possible in order to load the atoms into the global minimum of the lattice.

The lattice beams were initially adjusted using the steady state mode, as it was done in [Fölling,
2003]. The atoms are prepared in F = 2 after the magneto-optical trapping, it is therefore possible
to shoot the steady state captured atoms away, if the laser is locked to the F = 2→ F = 2 transition.
Since the atoms are compressed after molasses the position of the atoms changed and the alignment
had to be optimized. Further optimization was done such that all but one lattice beam were blocked,
the atoms were prepared as already stated in F = 2 also after compression and molasses. After
that part of the sequence a short pulse of lattice light was used to transfer atoms to F = 1, these
atoms are not detected by the absorption imaging. In this manner each beam is aligned such that
the absorption is as low as possible or that the lattice beam is overlapped. The retroreflected lattice
beam is aligned in the same manner but with less power and shorter pulses since the cloud is hit
twice.

The same procedure was conducted when we tried to implement the Raman sideband cooling inside
the dipole trap. This was done since the Raman sideband cooling will in the end be conducted with
atoms confined in the dipole trap.

5.4. Adiabatic Release and Capture

The atoms should be loaded into the optical lattice with as low heating as possible, the same is true
for the release after the cooling sequence. To provide low heating adiabatic release and capture is
necessary. If the lattice depth, which is proportional to the local intensity, is ramped up or down
according to

I(t) = I0
1

(1 + t
τ )2

(73)
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the atoms should not heat up as they are released from the lattice after cooling [Kerman et al., 2000;
Kastberg et al., 1995]. The time constant τ is also suggested in [Kerman et al., 2000] is chosen to
be 100µs. The ramp is provided by a Agilent 33522A function generator, since the stabilization is
implemented using a logarithmic photodiode the reference signal has to follow the same behavior in
order to realize the function. The ramp produced by the reference, measured by a liner photodiode
and measured by the logarithmic photodiode is depicted in Fig. 13, a fit was conducted for the ramp
measured by each element. Additionally the error signal while stabilizing the intensity is depicted.
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Fig. 13: Intensity ramp after Raman sideband cooling. The signal is normalized to the maximum
signal. (Top Left) Signal provided by the function generator as reference signal. A fit with τ = 100µs
is also depicted to show whether it coincides. (Top Right) Signal after intensity stabilization
measured with the logarithmic photodiode, same fit. (Bottom Left) Signal measured with a linear
photodiode (linPD), same fit. (Bottom Right) Error signal provided by the PID-controller. The
errorsignal in the beginning is there since this sequence was measured with insufficient power provided
by the input to the AOM.

The fit function for the logarithmic signals reads

flog(t) = a log(1 +
t− t0
τ

) + b, (74)
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Tab. 2: Resulting fit parameters for functions depicted in Fig. 13

a [a.u.] b [a.u.] t0 [µs]

Reference 0.13 0.39 150

LinPD 6.75 · 10−3 −7.77 · 10−3 182

Logarithmic PD −0.16 0.51 187

whereas the function to fit to the linear photodiode’s signal was

flin(t) = a
1

(1 + t
τ )2

+ b. (75)

The results for the fit parameters are listed in Tab. 2.

5.5. Testing the Raman Sideband Cooling

Cooling the atomic sample which is prepared in the lattice requires all parameters to be matched
perfectly. One critical parameter is the magnetic field in order to lift the motional sidebands to
degeneracy, directly associated with the magnetic field is the polarization of the Raman-pump beam.
The pump beam enables this cooling technique since only atoms which are cycled have the possibility
to lower their motional quantum number n.

As a first step the polarization of the Raman-pump beam was set to be purely σ+ polarized for a
magnetic field pointing along the z-axes. The cooling cycle would not work perfectly since the last
quantum could not be removed in some cases (cf. section 3). At first we adapted the polarization
settings of [Fölling, 2003], the resulting lattice is similar to the one presented in subsection 4.2, the
only difference is that the vertical running beam is polarized in y-direction. As a first approach the
magnetic field along all three directions was scanned. The sequence followed in all approaches is
schematically depicted in Fig. 14. The term MOT-phase corresponds to the whole procedure related
to the magneto-optical trapping, e.g. also optical molasses and compression.
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Fig. 14: Temporal sequence for Raman sideband cooling. After the MOT-phase the atoms are loaded
into the lattice and the magnetic fields are applied simultaneously. The lattice is ramped up by the
function generator which gets a trigger pulse. The length of the cooling cycle is sent to the function
generator beforehand, therefore it is only triggered once. The Raman-pump beam is switched on
with little delay.

To see whether the atoms get cooled or not, they get Raman sideband cooled for 20 ms with 1 ms
time of flight afterwards. After this time the atoms remaining from the MOT-phase have disappeared
and only atoms which are retained in the lattice are visible to the absorption imaging. In this first
approach the magnetic fields were scanned as follows Bx = 0 : 0,2 : 1,1 G;By = 0 : 0,4 : 2,2 G;Bz =
0 : 0,4 : 2,2 G (start:step:stop). The oscillation frequencies resulting from the input power of 20 mW
expressed in form of the magnetic field necessary to lift the magnetic hyperfine levels to degeneracy
were Bosc = 0.3 mG along the strongly confining and Bosc = 0.1 mG along the less confining axes.
The lattice light was shut off immediately without ramping it down since we were not aiming for
minimal temperature but seeing an effect of cooling. No matter which magnetic field settings were
applied, no atoms could be retained.

Since the required magnetic fields are on the same order as the earth’s magnetic field Bearth ≈ 0.5 G
[Finlay et al., 2010], the magnetic field was canceled out as good as possible (cf. subsection 5.1).
Having (almost) no residual magnetic field the cooling should only depend on the magnetic field in
z-direction. The magnetic field in z-direction was tested in finer steps, also both signs and therefore
also both polarizations of the Raman-pump beam were tested, but still no atoms could be retained.

The magnetic field was then set to the theoretical value and the Raman-pump detuning was
scanned. Raman cooling was done for 5 ms with 1 ms additional time of flight. An effect was observed
and the temperature with and without Raman sideband cooling was measured. The Raman-pump
detuning exhibits a dip in the cloud widths corresponding to lower temperatures, the scan is depicted
in Fig. 15.
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MHz.png

Fig. 15: Scan of the Raman pump detuning. The detuning is scanned around the resonance. A dip is
observed, at that setting a temperature measurement is conducted to see whether this effect results
from the cooling sequence Fig. 16.

Temperature measurement without cooling. Temperature measurement with cooling.

Fig. 16: Time of flight sequence to determine the temperature. The cloud is initially smaller without
Raman sideband cooling. The temperature in the imaging’s 0x-direction seems to be smaller if the
sample gets cooled.

The Raman sideband cooling seems to have some effect Fig. 16 at the given detuning. The same
measurements were conducted one day later but the results could not be reproduced.

After changing the polarization settings according to [Flir, 2006], the same measurements were
conducted again. The polarization of the reflected beams is rotated by 90 ◦ after reflection so that
the incoming beam is horizontally, the outgoing beam vertically polarized. The two running wave
are polarized along each others wave vector. The same scans did not lead to clear signal of cooling
nor heating.

Since it could be that if the degeneracy is not fulfilled for all three directions the cooling doesn’t
work, Raman sideband cooling in a one dimensional lattice was tested. To create this one dimensional
lattice the two running waves were blocked and the reflected beam was reflected with identical
polarization. The Raman-pump beam was applied while the lattice loaded (tRSCpumpdelay = 0 in
Fig. 14) the atoms were heated or pushed out of the observation area of the imaging. This effect was
affected by the magnetic strength in z-direction. Different Raman-pump powers didn’t seem to have
an effect.
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Fig. 17: Absorption images for increasing magnetic field in z-direction. The field increases from left
to right and top to bottom from 0 mG with step size 46 mG. On the individual pictures the y-axis is
mapped from right to left, the z-axis from top to bottom. The cloud widths corresponding to each
image are depicted below, whether these results are reliable is questionable since the atom cloud does
leave the section covered by the imaging system. The widths correspond to the widths on the images
above.

6. Conclusion and Outlook

In this thesis the basic principles of Raman sideband cooling have been discussed. The elementary
characteristics of the optical lattice potential have been calculated. The first trial-and-error measure-
ments have so far not been fruitful, still some dependence on the magnetic field strength has been
observed in a one dimensional lattice potential.

Since the cooling does not work yet one goal will certainly be to get the whole setup working.
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Nevertheless a setup in principle able to cool a sample of atoms to temperatures of ≈ 1µk has
been implemented. The time needed to cool should be on the scale of milliseconds [Fölling, 2003;
Kerman et al., 2000]. One key element, the Raman pump beam, maybe was chosen to have to
much intensity introducing heating which exceeded the possible cooling rates. The provided cooling
should in principle be good enough to compensate for the scattering from the lattice. In connection
with the overall setup which is used for quantum optical experiments it will be interesting to see
differences in performance between Raman sideband cooling after the MOT-phase and cooling inside
the optical dipole trap. Furthermore it would be interesting to measure the trap-depth and oscillation
frequencies of the lattice and compare these to the values presented here.

38



A. PID

In
pu

t 1In
pu

t 2

P I D
E
rr
or

 o
ffs

et

E
rr
or

 o
ut

Fa
st

 o
ut

pu
t

S
lo

w
 o

up
ut

S
ca

n-
In

pu
t

inf

O
P
46

7

O
P
46

7

O
P
46

7

O
P
46

7

5K

inf

1K

1K

1K

10K

10
K

22
R

O
P
46

7

O
P
46

7

O
P
46

7

O
P
46

7

1k

ADG221KD ADG221KDADG221KD

A
D

G
22

1K
D

56K

1K 1k

1K

1K

10
K

10
K

1Kinf

50
k

1K

O
P
46

7
O

P
46

7

O
P
46

7
O

P
46

7

10
K2uF

1K

1k
02

inf

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

1u
F

inf

1k
02

78
1X

79
1X

+1
5V

G
N

D

+1
5V

G
N

D
G

N
D

2

G
N

D
2

10
K

10
K

10
nF

V+ V-

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

GND2

20
k

20
k

50
k

10
K

0R

5k

V
+

V
+

V+

V-

V-

VCC

VCC

VSS

VSS

G
N

D
2

10
0n

F

1u
F

1u
F

1uF

1uF

GND2

GND2

In
/T

es
tIn
/T

es
t

S
ca

n/
E
rr

S
ca

n/
E
rr

O
ut

O
ut

G
N

D
2

1k

TE
N

_5
--
12

23
GND2

56KV+

10
0n

F

G
N

D
2

G
N

D
2

1k

1K

1K
1K

10
k

22
R

1K

22
R

22
R

22
R

56K
GND2

V+ G
N

D
2

10
0n

F

LT
10

10

V
+ V-

10
uF

10
uF

V+

V-

G
N

D
2

G
N

D
2

G
N

D
2

G
N

D
2

GND2

D
G

41
7

V
+

V-

GND2

V
+

1u
F

10
k

1k

G
N

D
2

5k G
N

D
2

22
-2

3-
20

21

22
-2

3-
20

31

10
k

D
IF

F_
C

R1

23
1

IC
1A

6 5
7

IC
1B

9 10
8

IC
1C

13 12
14

IC
1D

4 11

E
R

R
_O

FF
1

R3

R
2

R8

R
9

R11

R
13

R
14

2 3
1

IC
6A

6 5
7

IC
6B

9 10
8

IC
6C

13 12
14

IC
6D

4 11

R
15

D 2
1

IC8A

S 3

D 15
16

IC8B

S 14

D 10
9

IC8C

S 11

D
7

8

IC
8D

S
6

13 4V+ V-5
G

N
D

W
R

12

P-SW 1

R17

R
18

R
20

R
25

R28

R
29

R
30

R
32

C2

O
U

T_
O

FF
1

1
2
3

JP
-F

A
S
TR

33
2 3

1

IC
11

A

6 5
7

IC
11

B

9 10
8

IC
11

C

13 12
14

IC
11

D

4 11

1
2
3

JP
-F

A
S
T2

R
37

CSL

1
2
3

JP
-S

LO
WR

40

R
41

1
2
3

JP
-S

LO
W

2

R43

1
IN

2
2

C
7

C
9

C
11

C
13

C
16

C
17

C
20

C
21

C
24

C
25

C
26

C
28

C30

R
38

V
I

1

2

V
O

3

IC
2

G
N
D

V
I

2

1

V
O

3

IC
3

G
N
D

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

C
28

C
29

C
30

C
31

C
32

J2
A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10 A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

A
31

A
32

CD

R
27

R
47

CI

A
E

S

R
48

A
E

S

R
50

A
E

S

R
51

S
C

A
N

_G
A
IN

1

R55

AE

S

R7

C
37

C
14

C
15

C
18

C
10

C
12

C1

C8

M
O

U
N
T1

M
O

U
N
T2

X1
G

$1

X1
G

$2X1
G

$3

M
O

U
N
T1

M
O

U
N
T2

X2
G

$1

X2
G

$2

X2
G

$3

M
O

U
N
T1

M
O

U
N
T2

X3
G

$1

X3
G

$2

X3
G

$3

LED

R6

ZD20

-V
IN

2
3

-V
IN

1
2

+V
IN

2
23

+V
IN

1
22

+V
O

U
T1

14

C
O

M
M

O
N
1

9

C
O

M
M

O
N
2

16

-V
O

U
T2

11

P
W

S
1

D-SW 1

R24

C
19

R
57

R
58

R
49

R
52

A
E

S

R
53

R
26

R
54

R
35

R
59

R
60

I-SW 1

R61

C
4

V
+

1

B
IA

S
2

IN
P
U
T

8

N
C
_2

5

N
C
_3

7

N
C

4

V-
6

O
U
T

3

IC
-B

U
F

C
5

C
22

1
D

2IN
1

6

S
1

1
D
1

8

G
N
D

3
V-

7

V
+

4

IC
4

V
L

5

C
3

TP1

R
4

R5

AE

S

R10

1IN1
2

SCAN 1

P
W

R
-1

P
W

R
-2

X4
-1

X4
-2

X4
-3

X5
-1

X5
-2

R
12

+

+ +

15
V

15
V

15
V

B
oa

rd

B
oa

rd

B
oa

rd

Fig. 18: Schematic of the internal electronis used to realize a PID-controller. Developed by Sebastian
Hofferberth, Stephan Jannewein, Michael Schlagmüller and Kim Kafenda.
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B. Matrices of the Polarizability Tensor

Another form of Equ. 35 would be

Û = EL~r
∗α̂EL~r. (76)

The polarizability α̂ can be expressed as a matrix Mσ,σ′ multiplied by a constant factor α̃, this factor
reads

α̃ =

∣∣∣〈J‖ ~̂d‖J ′〉∣∣∣2
~∆

. (77)

The matrices are composed of the F = 1 states, to avoid ambiguity the matrix and its components
are stated,

|F = 1,mF 〉 〈F = 1,m′F | =

mF = −1,m′F = −1 mF = −1,m′F = 0 mF = −1,m′F = 1
mF = 0,m′F = −1 mF = 0,m′F = 0 mF = 0,m′F = 1
mF = 1,m′F = −1 mF = 1,m′F = 0 mF = 1,m′F = 1

 (78)

Mσ+,σ+ =

5/12 0 0
0 1/3 0
0 0 1/4

 (79)

Mσ−,σ− =

1/4 0 0
0 1/3 0
0 0 5/12

 (80)

Mπ,π =

1/3 0 0
0 1/3 0
0 0 1/3

 (81)

Mσ+,π =

0 1/12 0
0 0 1/12
0 0 0

 (82)

Mπ,σ+ =

 0 0 0
1/12 0 0

0 1/12 0

 (83)

Mπ,σ+ =

0 1/12 0
0 0 1/12
0 0 0

 (84)

Mσ−,π =

 0 0 0
1/12 0 0

0 1/12 0

 (85)

Mσ+,σ− = Mσ−,σ+ =

0 0 0
0 0 0
0 0 0

 (86)
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